
SPONSORED BY MEMBERS OF THE SAPHIRE USERS GROUP

Volume 7 - Number 2
Fall 2002

Modeling Risk and Reliability
While the initial version of SAPHIRE (in the 1980s) was primarily designed as a teaching tool for
reliability engineers (focusing on graphical fault trees) it has grown into a full-featured tool
primarily for risk and reliability analysts. As such, an extensive list of features are available to
assist in both the construction of a model and the subsequent analysis of the model. In this
issue of the Facets, we cover topics ranging from system modeling techniques, methods for
checking completed models, and ways in which to subdivide analysis results.

� Using fault trees to represent systems is a common practice, but in the “Modeling
Systems Upsets” article we focus on potential modeling issues one must consider.

� In “Who’s on First...,” we illustrate the power behind the SAPHIRE relational database
design by demonstrating the basic event cross-referencing feature where, at the touch
of a button, one can find every place a basic event is used in a project.

� In the current installment of the “calc type corner,” we discuss the FALSE calculation
type and provide information on how it is used both for basic event
probabilities and when introduced into Boolean logic.

Contents

2 FAQ - Binning event
tree sequences by
initiators

4 Modeling System
Upsets

8 Who's on First –
Keeping Track of Basic
Events

11 "Calc type" Corner -
FALSE for Success

12 FAQ - Correlating
basic events uncertainty

saphire.inel.gov Fall 2002 Page 2

The SAPHIRE Facets is published by the Idaho National Environmental and Engineering Laboratory.
The editor is Dr. Curtis L. Smith and may be reached at P.O. Box 1625, Idaho Falls, ID 83415-3850 or by e-mail: CLS2@inel.gov

SAPHIRE Facets is published twice a year. Article submissions are welcome and can be sent to the editor.
Copyright © 2002 by Bechtel BWXT Idaho, LLC.

FAQ - Is there a way to bin event tree sequences by initiators such that a numerical
rank (by initiator) can be obtained from the results?

There are two ways to accomplish this feat, one using the cut set “slice” feature and the second using the end state partition
rules. The “slice” feature is the easier of the two, but does not store the results as a permanent part of the database.

To use the "slice" feature, highlight all sequences of interest then select Display ���� Cut Sets. Click the Slice button. You
will then see a list of basic events – these are the events that show up in the sequence cut sets. Included in this list are all
of the initiating events that appear in the sequences cut sets. Consequently, if you want to look at just the cut sets from the
IE-1 sequences, select the IE-1 event in the list, click the "-->" button, and then click the Apply button. You would then see
a window with just those cut sets that
have IE-1 in them. The top of the window
has the total results (i.e., all cut sets) and
the subset containing the IE-1 cut sets in
the sliced part (labeled "This List").

saphire.inel.gov Fall 2002 Page 3

An alternative way to split the cut sets based upon the initiating event is to develop partition-based end state rules. Partition
rules are a set of programmatic rules that subdivide sequence cut sets into user-defined end states. To enter partition rules,
highlight the sequences of interest then select the Cut Set ���� Partition ���� Edit Project option. Then, in the rule editor, you
would enter rules that look like:

if init(IE-1) then
partition = "ES-IE-1";

elsif init(IE-2) then
partition = "ES-IE-2";

elsif init(IE-3) then
partition = "ES-IE-3";

else
partition = "ES-REMAINING-IES";

endif

After finishing and saving the rule, you would apply the partition rule via the Cut Set ���� Partition ���� Apply Batch option.
Now, you would proceed to end states. Each end state partition specified in the rule above (ES-IE-1, ES-IE-2, etc.) will
appear in the list of end states. Highlight these end states and select the Gather option. Specify that the cut sets are to be
gathered by “Cut Set Partition” (this option tells SAPHIRE to use the partition rule above). After applying the gather option,
SAPHIRE will gather all of the cut sets meeting the rule search criteria (e.g., cut sets containing IE-1) and put them into end
state as specified (i.e., "ES-IE-1"). You can then view the cut sets for each end state or see the resulting total for each end
state group. �

saphire.inel.gov Fall 2002 Page 4

Modeling System Upsets

Curtis Smith

Representing system upset conditions via fault tree modeling can, in certain situations, be a challenge. For example,
consider the simple power generation system (two generators supplying a single bus through two breakers) shown below. If
the demand is such that any one generator can supply the load, one may immediately
conclude that a fault tree with an AND gate could represent the system. Inputs into this
AND gate would then be the generators and, perhaps, the circuit breakers.

One may then ask "what is the probability, within the next year, that I see an interruption
of power to the load?" This question implies that I must assign applicable probabilities to
the basic events feeding my AND gate described above. Since it was dictated that I am
concerned about failures within a year, it may be natural to assign a failure probability (in
SAPHIRE) using the nominal generator failure rate (assumed to be 1E-5 per hour) and a
mission time of one year (8760 hours). Making this assignment in SAPHIRE, via the
"calculation type" of "3" (operating component without repair, see SAPHIRE Facets Vol. 6
No. 2) yields a probability of:

P(generator) = 1 - exp(- rate * mission time)
= 1 - exp(- 1E-5 * 8760)
= 0.084

saphire.inel.gov Fall 2002 Page 5

Now, since the generators feed into an AND gate, the system top event probability would be given as:

P(system) = P(generator A) * P(generator B) = 0.084 * 0.084 = 7.1E-3

The calculation above excludes the potential for common-cause failure. But, is the result of 7.1E-3 really what I was looking
for from SAPHIRE in the first place? I had expressed that I would like to know the probability of an interruption of power.
Unfortunately, what I have calculated is the probability that I see two events, generator A fails (and is not repaired) and
generator B fails (and is not repaired). This calculation is not what I was looking for, since in the real world a failed
generator would be repaired – most likely – as soon as possible. Thus, I have calculated a probability for an event that
would not be allowed to happen.

Since I know that SAPHIRE has an unavailability model where the potential for repair is included, one may be tempted to
utilize that calculation type to estimate the system interruption probability. Recall that calculation type "5" has, in addition to
the failure rate and mission time, a parameter called the mean time to repair (see SAPHIRE Facets Vol. 7 No. 1). Let us
assume that the mean time to repair for a generator is eight hours. I then find, using SAPHIRE, that the unavailability of a
generator over a year, given that it can be repaired, is:

P(generator) = 8E-5

Again, I return to the fault tree (i.e., my AND gate) and find the system top event probability to be:

P(system) = P(generator A) * P(generator B) = 8E-5 * 8E-5 = 6.4E-9

saphire.inel.gov Fall 2002 Page 6

Again, I question whether this result is really what I was looking for from SAPHIRE? Unfortunately, what I have calculated is
the probability that two generator outages (a failure and then the time it takes to repair) overlap in time. Since the repair
time is eight hours, this overlap of two failed generators would be within the eight hours. Since it is unlikely to have one
generator out for eight hours (8E-5), it is even more unlikely to (independently) have two generators out at the same time.
Hence, the low value of 6.4E-9. But, this probability – while interesting – is still not what I am looking for from SAPHIRE.
Instead, what I want to know is the probability of seeing an interruption of generator power to the load.

As we can begin to see, the context of the system modeling not only dictates the structure of my fault tree model, but also
plays an integral part of the probabilities that are introduced into the logic model. While the system hardware and operation
does not change, my unreliability model "morphs" depending on the question I am asking. Now, let us finally answer the
question "what is the probability, within the next year, that I see an interruption of power to the load?"

An interruption is defined as a loss of one generator followed by a subsequent loss of the second generator. Recall that
earlier I indicated two important boundary conditions: (1) common-cause failures do not exist and (2) a generator can be
repaired in eight hours (on average). Consequently, one should model failure of one generator followed by a subsequent
failure of the second generator while the first is still being repaired. It is this scenario that will lead me to the interruption
probability that I desire.

So, how do we best model this outage situation? Since the scenario is a temporal situation, it would be natural to turn to an
event tree structure, where the initiating event is failure of one generator while the next top event is failure of the remaining
generator during the repair time. Alternatively, one could represent the same scenario in a single fault tree. I chose this
second option for the sake of simplicity, and our SAPHIRE fault tree is shown on the next page.

saphire.inel.gov Fall 2002 Page 7

The basic event probabilities are:

P(first generator fails)
= 1 - exp(-rate*mission time)
= 1 - exp(- 1E-5 * 8760)
= 0.084

P(second generator|other in repair)
= 1 - exp(- rate * repair time)
= 1 - exp(- 1E-5 * 8)
= 8.0E-5

From SAPHIRE, we find that the top event
probability is 1.3E-5, which represents the
probability of an interruption of power over

the next year. Note though that even this calculation is (technically) not correct since I ignored the potential of seeing
multiple generator trips (and subsequent repairs). To be precise, I should have represented situations where one generator
trip occurs, two trips occur, three trips occur, etc. But, since the failure rate is low in this case, the probability of seeing two
or more trips is about 0.004, which turns out to be approximately 5% of the probability of one trip. To close the discussion, it
should be noted that the "correct" answer of 1.3E-5 is between the two extremes found earlier (6.4E-9, representing the
eight hour outage, and 7.1E-3, representing two trip events). Consequently, our earlier crude modeling provided a lower
and upper bound to the correct answer, but still represented a significant deviation from the correct results. �

saphire.inel.gov Fall 2002 Page 8

Who’s on First – Keeping Track of Basic Events

Kellie Kvarfordt

The basic event is the core building block of any SAPHIRE risk or
reliability model. Basic events are inherent to fault tree logic, cut sets,
change sets, recovery rules, and more. But, since a basic event can
be used in so many places in a project, it is easy to lose track of them.
To build, validate, or just better understand a model, it is useful to
locate the areas in a project that a particular event can influence. This
article discusses how to track basic event usage through SAPHIRE's
cross referencing features.

There are a couple of places in SAPHIRE where basic event usage
can be reported. The first place is via the Modify ���� Basic Event
option. This option displays a master list of basic events for the
current project. From here, select a basic event and press the Cross
Reference button. SAPHIRE will create a hierarchical report
containing a comprehensive listing of places that event is used.

Click the (plus) and (minus) boxes to expand and contract the
list to focus on particular areas, or press the Expand All button to list
the complete details for the basic event.

saphire.inel.gov Fall 2002 Page 9

Note that unused events appear in the Edit Events window marked with a dash (-) to the left of the event name. Cross
reference reports for those events will be empty. All unused basic events can be deleted from the project at once by
pressing the Remove Unused button, or individually by selecting the basic event, right clicking, and choosing the Delete
menu option. To maintain data integrity, SAPHIRE will only remove those events marked as unused. To delete a
referenced event, use the cross reference report as a handy way to locate and remove any undesired references (e.g., the
event is used in a fault tree or recovery rule) to an event so that it can be removed from the project.

Note that SAPHIRE Version 7.x extends this “one-stop
shopping” cross-reference feature to both fault trees and
end states as well. For example, at right, we show how
the CCS fault tree is used in the DEMO project in
SAPHIRE 7.x. Here we note that the CCS fault tree is
located in two sequences, LOSP 2 and LOSP 3, and can
be found in the logic for the LOSP event tree.

Reporting Cross References

A second basic event cross reference option is available
through the Report ���� Basic Event ���� Cross Reference
menu option. From this option, SAPHIRE reports where
selected basic events are found in either cut sets or fault
tree logic, depending upon the report button selected (see
next page).

saphire.inel.gov Fall 2002 Page 10

The report cross reference feature is useful for
summarizing the usage of multiple basic events in a
single report. However, this option prints cross
reference information only for one type of event
usage per report. For example, the Sequence
button shows only sequences which contain (via cut
sets) the selected basic event(s). The Fault Tree
button shows only fault trees which contain the
selected basic event(s) while the End State button
list the end states containing the selected basic
events(s).

The most common uses of basic events – as a part
of cut sets and logic – are available via these report
options. More subtle usages, such as in change sets
and recovery rules, are available only through the
Modify ���� Basic Events ���� Cross Reference
option discussed earlier.

One should note that if the results of the cross reference reports appear to contain erroneous information or omissions,
SAPHIRE's cross reference maps may need to be updated. Choosing the Utility ���� Recover Data Base menu option will
update the database so that the report will display the correct information. �

saphire.inel.gov Fall 2002 Page 11

"Calc type" Corner - FALSE for Success

Curtis Smith

If one looks at the basic event data options (e.g., via Modify ���� Basic Event), under the "Random Failure Data" category of
information is a field called "type." Normally, it seems that this information is used to indicate a probability calculation for the
basic event. But, the calculation type, or "calc type" in SAPHIRE lingo, is used for more than just denoting a probability
equation. As we have discussed in previous SAPHIRE Facets, calc types have a variety of uses, just one of which is to
indicate a probability calculation equation for a basic event. In this issue, we will discuss calculation type F or FALSE.

Calculation Type F

The F calculation type represents a logically FALSE house event. In general, Boolean house events have either probability
one (if TRUE) or zero (if FALSE). Since SAPHIRE fault trees are based on the concept of failure space (i.e., the basic event
probabilities nominally represent the likelihood of failing), having a probability of zero implies that the basic event is not
failed. In other words, a FALSE house event signifies a success event. A basic event that has been set to F has a nominal
probability of zero. In addition though, SAPHIRE treats these events in a special manner in order to determine the correct
minimal cut set when evaluating the Boolean logic indicated via the fault or event tree. Specifically, when the logic is solved,
SAPHIRE prunes the logic depending on the structure of the tree and type of house event. Depending on the gate type that
contains the F event, SAPHIRE will:

If the gate is an AND gate, then the gate is set to F.
If the gate is an OR gate, then the F event is removed from the gate input list.

saphire.inel.gov Fall 2002 Page 12

Of course, since events feed into gates which (perhaps) feed into other gates, SAPHIRE will propagate the F event up
through the tree when applicable. For example, if basic event ABC (set to F calc type) is input into an AND gate G1, then
G1 becomes an event (like ABC) and is set to F. If gate G1 is an input to gate G2 and G2 is an AND gate, then G2 will be
turned into an event and set to F. This process is repeated until (1) the top of the tree is reached or (2) the F event reaches
an OR gate. If the top of the tree is reached and the top gate is an AND gate, then the tree has no minimal cut sets. In this
case, SAPHIRE will display the message "The TOP event cannot occur (FALSE)!"

Conclusions

For calc type F, SAPHIRE offers the user two primary uses. First, it is used if a component is deemed to be perfect (failure
probability equals zero). Second, it is used to “turn off” portions of the fault tree logic, thereby adjusting the fault tree without
having to create an entirely new tree. �

FAQ - How do I correlate individual basic events during uncertainty sampling?
If basic events are left uncorrelated, then they are treated as being independent from one another during the uncertainty
sampling. To correlate basic events, first make sure that each basic event in the correlation “group” has the same mean
value and uncertainty distribution. Then, select each basic event via the Modify ���� Basic event option. For each event,
enter a correlation class identifier. Note that the identifier must be the same for each event in the correlation group and
consists of one to four letters and/or numbers. �

